Reward Functions for Accelerated Learning

نویسنده

  • Maja J. Mataric
چکیده

This paper discusses why traditional reinforcement learning methods, and algorithms applied to those models, result in poor performance in situated domains characterized by multiple goals, noisy state, and inconsistent reinforcement. We propose a methodology for designing reinforcement functions that take advantage of implicit domain knowledge in order to accelerate learning in such domains. The methodology involves the use of heterogeneous reinforcement functions and progress estimators, and applies to learning in domains with a single agent or with multiple agents. The methodology is experimentally validated on a group of mobile robots learning a foraging task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS

Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...

متن کامل

Efficient training protocol for rapid learning of the two‐alternative forced‐choice visual stimulus detection task

The potential of genetically engineered rodent models has accelerated demand for training procedures of behavioral tasks. Such training is generally time consuming and often shows large variability in learning speed between animals. To overcome these problems, we developed an efficient and stable training system for the two-alternative forced-choice (2AFC) visual stimulus detection task for fre...

متن کامل

Active Reward Learning

While reward functions are an essential component of many robot learning methods, defining such functions remains a hard problem in many practical applications. For tasks such as grasping, there are no reliable success measures available. Defining reward functions by hand requires extensive task knowledge and often leads to undesired emergent behavior. Instead, we propose to learn the reward fu...

متن کامل

Reward Function and Initial Values: Better Choices for Accelerated Goal-Directed Reinforcement Learning

An important issue in Reinforcement Learning (RL) is to accelerate or improve the learning process. In this paper, we study the influence of some RL parameters over the learning speed. Indeed, although RL convergence properties have been widely studied, no precise rules exist to correctly choose the reward function and initial Q-values. Our method helps the choice of these RL parameters within ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994